An Iterative Algorithm of Solution for Quadratic Minimization Problem in Hilbert Spaces

نویسندگان

  • Li Liu
  • Guanghui Gu
  • Yongfu Su
  • Jong Kim
چکیده

The purpose of this paper is to introduce an iterative algorithm for finding a solution of quadratic minimization problem in the set of fixed points of a nonexpansive mapping and to prove a strong convergence theorem of the solution for quadratic minimization problem. The result of this article improved and extended the result of G. Marino and H. K. Xu and some others.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An iterative method for amenable semigroup and infinite family of non expansive mappings in Hilbert spaces

begin{abstract} In this paper, we introduce an iterative method for amenable semigroup of non expansive mappings and infinite family of non expansive mappings in the frame work of Hilbert spaces. We prove the strong convergence of the proposed iterative algorithm to the unique solution of a variational inequality, which is the optimality condition for a minimization problem. The results present...

متن کامل

Strong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces

In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.

متن کامل

An iterative method for tri-level quadratic fractional programming problems using fuzzy goal programming approach

Tri-level optimization problems are optimization problems with three nested hierarchical structures, where in most cases conflicting objectives are set at each level of hierarchy. Such problems are common in management, engineering designs and in decision making situations in general, and are known to be strongly NP-hard. Existing solution methods lack universality in solving these types of pro...

متن کامل

A General Iterative Method for Constrained Convex Minimization Problems in Hilbert Spaces

It is well known that the gradient-projection algorithm plays an important role in solving constrained convex minimization problems. In this paper, based on Xu’s method [Xu, H. K.: Averaged mappings and the gradient-projection algorithm, J. Optim. Theory Appl. 150, 360-378(2011)], we use the idea of regularization to establish implicit and explicit iterative methods for finding the approximate ...

متن کامل

Strong Convergence Theorems of Modified Mann Iterative Process for Nonexpansive Mappings in Hilbert Spaces

The purpose of this article is to modify normal Mann’s iterative process to have strong convergence for nonexpansive mappings in the formework of Hilbert spaces. We prove the strong convergence of the proposed iterative algorithm to the fixed point of nonexpansive mappings which is the unique solution of a variational inequality, which is also the optimality condition for a minimization problem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010